得到
  • 汉语词
  • 汉语典q
当前位置 :
三角形中位线定理证明方法
更新时间:2020-10-28 00:00:00

三角形中位线定理是三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。

例如证明:已知△ABC中,D,E分别是AB,AC两边中点。求证DE平行于BC且等于BC/2。

过C作AB的平行线交DE的延长线于G点。

CG∥AD。

∠A=∠ACG。

∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)。

△ADE≌△CGE(A.S.A)。

AD=CG(全等三角形对应边相等)。

D为AB中点。

AD=BD。

BD=CG。

又BD∥CG。

BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)。

DG∥BC且DG=BC。

DE=DG/2=BC/2。

三角形的中位线定理成立。

逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线

云一题专稿内容,转载请注明出处
不够精彩?
云一题(yunyiti.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

邮箱:  联系方式:

Copyright©2009-2021 云一题 yunyiti.com 版权所有