得到
  • 汉语词
  • 汉语典q
当前位置 :
中位线定理怎么证明
更新时间:2020-09-29 00:00:00

设三角形三点分别为(x1,y1),(x2,y2),(x3,y3)。

则一条边长为 :根号(x2-x1)^2+(y2-y1)²。

另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)。

这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2。

最后化简时将x3,y3消掉正好中位线长为其对应边长的一半。

中位线是在三角形或梯形中一条特殊的线段,与其所在的三角形或梯形有着特殊的关系。连接三角形的两边中点的线段叫做三角形的中位线。三角形有三条中位线,首尾相接时,每个小三角形面积都等于原三角形的四分之一,这四个三角形都互相全等。

云一题专稿内容,转载请注明出处
不够精彩?
云一题(yunyiti.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

邮箱:  联系方式:

Copyright©2009-2021 云一题 yunyiti.com 版权所有