得到
  • 汉语词
  • 汉语典q
当前位置 :
黎曼和的黎曼积分的性质
更新时间:2020-08-19 00:00:00

性质:1、正定性;如果函数在区间上处处大于等于0,则它在上的积分也大于等于零;2、可加性;如果函数在区间和上都可积,那么在区间上也可积,并且有无论a、b、c之间的大小关系如何,以上关系式都成立;3、上的实函数是黎曼可积的,当且仅当它是有界和几乎处处连续的;4、如果上的实函数是黎曼可积的,则它是勒贝格可积的;5、如果是上的一个一致收敛序列,其极限为,那么,如果一个实函数在区间上是单调的,则它是黎曼可积的,因为其中不连续的点集是可数集。

黎曼和:德国数学家,虽然牛顿时代就给出了定积分的定义,但是定积分的现代数学定义却是用黎曼和的极限给出。

云一题专稿内容,转载请注明出处
不够精彩?
云一题(yunyiti.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

邮箱:  联系方式:

Copyright©2009-2021 云一题 yunyiti.com 版权所有